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Dranko Grünbaum: 

NEW VIEWS ON SOME OLD QUESTIONS OP COMBINATORIAL GEOMETRY *) 

1. Introduction,  The main motivation for this talk is my 

feeling that geometric aspects of combinatorial problems (and combina- 

torial aspects of geometric problems) are receiving less attention 

than they deserve - be the merit determined by Intrinsic interest or 

by Influence on and inspiration for other parts of combinatorics. The 

thinking of some of the most prominent founders of combinatorics (like 

L. Ruler, J. Steiner, and T. P. Kirkraan) was to a large extent geometric, 

and my thesis is that much that is valuable can be found by following 

their lead. 

Although geometry and combinatorics Interact at many levels and in 

a multitude of ways, I shall examine here only two such areas. This is 

not caused by any objective assessment of their value, but by the 

accident of my having recently been interested in them, or having heard 

of relevant new results» As will be apparent, many new problems 

- geometric as well as purely combinatorial - are suggesting themselves 

very naturally. 

The two areas we shall discuss are convex polytopes, and arrangements, 

They are both concerned with phenomena in the (real) Euclidean plane or 

n-space, but their ramifications are very farflung. In each area, the 

coherent body of available geometric facts offers the possibility of 

obtaining interrelated points of view on a whole family of problems, 

and naturally leads to unexplored avenues in many directions. It may 

also suggest methods of proof, or instructive examples. I hope that the 

cases discussed in the following pages will provide ample illustrations, 

and possibly Induce other workers to try their hands at solving the 

remaining open questions. 

*) Research supported in part by the Office of Naval Research 
under Grant N0O01^-6?-A-0t03-0003. 
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2.    Convex polytopes.    The combinatorial aspects of the  theory of 

polytopes appears to have been totally alien to  the mathematicians of 

antiquity and the middle ages. Euler seems to have been the first to show 

genuine interest for it and  to obtain non-trivial results (Euler characte- 

ristic, etc.).  A large part of the interactions of the  theory of 

3-polytopes  (3-diraensional convex polytopes)  and combinatorics  (especially" 

graph theory)  is based on the following theorem of Steinltz  [1922] 

(see Grtlnbaum [1970;  Section 1.2] for details and references to the 

literature) i 

A graph   G    is Isomorphic to__the_graph defined by the vertices and 

edges   of some 3-Polytope if and only if   G    is planar and 3-cqnnected. 

To discuss  the first group of graph-theore tic results and problems 

related to convex polytopes we recall  the following theorem of V. 

Eberhard  [1891]$ 

Given non-negative integers p_,  pju, p  ,  p  ,  pg  ,,.., p      with the 

property Q 

(*) S_       (6-k)pk= 12    , 
3<rk^6 

there exists a 3-valent 3-polytope P realizing p  ,...,p    ,   that__ls, 
- - j Yl 

such__that    pk(P) = p,     for all    k ^ 6  , where    p (P)    is  the number 

of k-gonal faces of    P  . 

Following a simpler proof of Eberhard1 s theorem given in.Grtlnbaum 

[1967;  Section 13*3]»  a large number of analogues and extensions of 

Eberhard*s  theorem to planar graphs   (and  to graphs imbedded in other 

2-manifolds)  was obtained   (for details and references  see Grtlnbaum 

[1970; Section 1.3]).   It should be noted  that  (using Steinitz«s  theorem, 

and duality for planar graphs)  Eberhard's  theorem may be interpreted 

as yielding information on  the valence  sequences   ("degree  sequences") 

of  triangulations of  the  plane.  It is well known that only  the most 
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rudimentary results have been found so far about valence sequences of 

arbitrary planar graphs,  although that problem has been proposed  (In 

the dual formulation) already by Sainte-Marie [18953. 

There has been appreciable interest in the set of values of    P^(P) 

possible  (in Eberhard*s   theorem or its graph-theoretic analogues)  for a 

given sequence    p-,...,p    .  The first non-trivial result, establishing 

a special case of a conjecture of Eberhard [1891], was found in 

Grtinbaum-Ho tz ki n [1963]: 

If    p, a 4 and    p    = C for    j 4 3.6  ,  then the set of values of 

p, (P)  possible in realizations of the sequence consists precisely of 6   . , . _ — —  

all the even Integers different from 2. (For far-reaching generalizations 

of this result see Gallal [1971] and the references given there.) 

The behaviour of the set ipA  in this case was established as 

typical by the following recent result of Fisher [1973]: 

If a sequence p_,....p  satisfies (*) , the set of values of pA ,   3 n  "*   ■     ° 
possible in realizations of  the sequence contains either all sufficiently 

large even integers,  or all sufficiently large odd ones. 

If    p,(P)  is Interpreted as the number of k-gonal countries of the 

(2-connected)  3-valent planar graph    P  ,  then    p?(P)    Is also meaningful, 

and Eberhard's  theorem and  the condition (*)  may be extended to sequences 

that start with    p?. 

A conjecture made already by G.  Brunei  [1897]   (and independently 

also by Kalkevitch [1970])  deals with such a case;   it was recently 

established by Grttnbaura-Zaks  [1973] where it was proved together with 

a number of analogous results: 

If    P2 = 3      "nd    p. = 0    for    J /- 2, 6    the set of values of      p, 

possible in realizations of  this sequence is precisely the set of 
2 ? integers representable in the form    p- s u    + uv + r  » 1   , where 

u,  v    are non-negative integers and    (u,v)  ^  (0,0)   . 

HttüM^, „_1^1^!T^*^*_ 



-    l\    m 

Ihis result shows that for    p? ^ 0    the behaviour of      \pA 

is drastically different than In the case covered by Fisher's 

theorem. 

Among the open problems related to these results are: 

What are the analogues of Fisher^ theorem if    p„ £ 0 j what if 

even    p.    is different from zero ? 

Are there analogues of Eberhard's theorem for graphs imbedded in 

2-manlfolds if dlgons  (and monogons) are permitted ? If digons  (and 

monogons) are allowed,  planar graphs may have all vertices of arbitrarily 

high valence. Zaks  [19733 has established an Eberhard-type theorem for 

6-valent planar graphs  (in which case  the number    p^    of triangles is 

not determined),  but many natural extensions are still unexplored. 

# # # 

The second group of graph-theoretic problems derived from results 

on polytopes starts from the relatively recent (and unfortunately rather 

little known)  beautiful  theorem of Kotzig [19553  (for a more readily 

accessible proof see Orttnbaum [1973a3)s 

Every 3-polytope    P    has an edge such that the sum of the valences 

of its endpoints is at most 13;   the  number 13 Is best possible. 

Kotsig's result,  which can obviously be  translated  to deal with 

3-connected planar graphs,  has recently been strengthened in several 

directions. Jucovlc  [19733 has shown that every    P    has at least 3 edges 

of  the  type discussed,  and  at least 6 if    P is simpliclal  (that is,   if 

all   the faces of    P    are  triangles). 

In order to describe some other results and open problems, let us 

denote by e- ^ s e, v(P) the number of those edges of the 3-polytope 

or planar graph    P    which have one endpoint of valence j   ,   the other 

•■ ^^>^-^**&®qm$$) 
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of valence k .   (The fact that    e,  - + er s > 0    for planar triangulations 

of minimal valence 5 was established by Wernloke [190^3 in connection 

with reductions of the four-color problem. Strengthenings of this result 

- vrhich is less deep than Kotzig*s - have also been given by Jucovic 

[1973]).) 

A new improvement of Kotzig's  theorem iss 

If    P    is a triangulatlon of the plane with  >   k    vertices  (or, 

equivalently, a simplicial 3-polytope)  such that    e        = 0 whenever 

j + k £ 12  ,   chen    e_ ,Q> 60 • 

To prove  this result we recall that the proof of Kotzig's  theorem 

in Grünbaum [1973*3 actually established  that under the assumptions 

of the theorem 

<**> e3,10> 2k + 3v10  , 

mere    v1Q    is the number of 10-valent vertices.  But this inequality 

has a rather interesting self-improving character. Since    QJ%10 - 2^  , 

and a 10-valent vertex is adjacent to at most five 3-valent ones,  it 

follows  that    v10>   5   ,  so  that    e- 10 > 39    by    (**).  Then    v1Q> 8  , 

so    e_ 1r> ^8,   thus    v, A> 10    and then    e > 5^.     Therefore 
j, lu lu ~ 3,10 

10 > 11, e    > 57 , and finally v ^ 12 and e    > 60 . 
j 110 -LG j 110 

The inenuality e„ «. *> 60    is somewhat remarkable since it is 3,10 
best possible in the  following strong  senses  Equality holds  for the 

3-polytope obtained by placing 20 small pyramids on the faces of the 

icosahedron,  as well as for infinitely many other 3-polytopes. 

The last result and the  theorem of Jucovic  [19733 lead  to  the 

idea that a relation of  the  type <i- C\*  ve,  v  >   1    should 
j+k £13        J*     J* 

hold for every simplicial 3-polytope.  More precisely,  we conjecture  that 

6e*,10 + 2%9 + 10e3.9 + 8e'+.S + 15e?,8 + e5.7 + 12e*,7 + 20e3,7 +36e6,6 + 

6e5,6 + XH,6 + 30e*f6 +12e*>5 + 21ejJj5 + 36e^$ + 36e^ + *5eJ^ + 

60e*      !>   360 .  Not all  the coefficients in this Inequality are equally 
3»3 ""■ 

j^Sfiäjy^S^&fo; «öigljlÄlj 
Una 
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believable, but I feel reasonably sure about those Indicated by an 

asterisk. 

P. Erdfts  (private communication) has conjectured that Kotzig's 

theorem is valid for all planar graphs without loops or multiple 

edges and -of minimal valence    3 • 

Other open problems related to Kotzlg's theorem include generali- 

zations of the above  to triangulations of (or to all 3-connected graphs 

imbeddable or 2-cell imbeddable in) 2-manifolds of higher genera,  Kotzig's 

number for triangulations of the torus is easily seen to be 15$ but 

nothing beyond that seems  to be known. Even greater is the challenge 

to find meaningful analogues for suitable classes of higher-dimensional 

complexes. 

* * # 

Several other types of problems in graph-theory motivated by the 

theory of polytopes are discussed in Grtinbaum [1973a]  and [1973b].  Instead 

of repeating them here,  we  turn to the area of arrangements. 
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3. Arrangements,    A general topic of investigation that has been 

frequently emerging in many variants for at least 150 years can be j 

described as follows; What can we say about the various phenomena that ! 

may be observed in finite sets of points, lines,  curves of various 

families,  flats,  or hyperplanes,  in the real plane  (Euclidean or projective| 

the sphere, or in the higher-dimensional spaces.  The first - and rather        ! 

limited - attempt to systematically survey the results known on this 

topic that we call "arrangements"  (of points,  lines,  etc.) was made in 

the recent booklet Grünbaum [19?2]. : 

Historically,  some of  the problems on arrangements of points and 

lines generated interest in (or were associated x*ith)    various purely 

combinatorial structures - such as  the Kirkman-Steiner triples, 

block designs,  finite geometries, etc. Others led to investigations that 

are usually associated with algebra,  or algebraic geometry,  or with 

topology.  It often turned out that in the modified or generalized setting 

the problems have a very elegant solution -   jut this does not (or at 

least it should not)  obviate  the need of trying  to find answers  to the 

original questions. por background,  references, and 

material related  to  the  topics discussed below the reader is generally 

refered  to Grtinbaum [1972],  and for higher-dimensional material  to 

Grünbaum [1971]. 

Por a set A of n points in the plane, not all on one line, 

we shall denote by m,(An) the number of lines containing precisely 

j    of  the points.  Several variants of  the following problems were 
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repeatedly mentioned and investigated by J.  J, Sylvester between 186? j 
i 

and 1893»  many others were raised by other authors  (see Grtinbaum I 

L19?2;  Chapter 2] and Burr-Grtinhaum-Sloane  [19733    for detailed references)} 

(i)    Determine    nu(n)   ,   the minimum of    mg(A )    when    A^   varies j 

over all (non-collinear)    n-pointed sets in the plane. 

(il)    For each    j > 3    determine      m,(n)   ,   the maximum of    m,(A ) 

when    A_    varies over all n-pointed sets in the plane. 

Concerning the first problem it Is known that 

3n/7   £ in,£n)   £ (?C(n)   , 

where f 3,  3, **, 6      for   n « 3. **■»  5,  13 

p((n)  =   *\    n/2 n even,  n ^ 4 

[   3CnA3 n odd,  n ^ 3,  5,  13 . 

It may be conjectured that    m2(n) =    Ci (n)    for all    n >_   3  J   this 

relation is known to hold for    3 £ n 414    and    n = 16,  18,  22  .    The 

bound    3n/7 is due  to Kelly-Koser [19.58]. 

Concerning  the case    j = 3    of the second problem,  some assertions 

of Sylvester's have recently been verified and  strengthened in Burr- 

Grünbaum-Sloane  [19731 where it was established  that 

fi>(n)   £ m3(n) £    f(n)   , 

::i th 

(bin) = 
6,  16,  37, 52 

1 +  [n(n-3)/6] 

for    n = 7»  11,  16,  19 

all other    n  , 

and 

Tin) «      ((o) m2(n))/3 

It may be conjectured  that    m (n)  =   A(n)     for all n  5   this  Is known 

to be  true for    4 l~n £Tl2    and for    n = 16. 

The determination of    m„(n)    is of interest,  among others,  because 
3 

of its  connections on  the  one hand   to  the Kirkman [18^73  problem 

of maximizing     the number of  triplets on    n    elements,  with no pair 
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occuring twice, and on the other hand  to the elementary algebraic 

geometry of cubic curves and  to the Weierstrass elliptic functions. 

The degree of our knowledge changes drastically when we  turn to 

consider    m*(n)    for    j > k.  The best result known is due to    H. Croft 

and P. Erdös  (unpublished)» 

For each    J > 3    there exists a constant    c   > 0    suchthat 
2 

mjn) > c.n     for all    n > J  . 

The proof of Croft and Erdös is based on the observation that for 

k sufficiently large,    c*n2    lines    intersect precisely    j    of the n = k2 

lattice points    (x,y)    with    o£x,y^k . 

A related proof of the protectively dual statement (that    n   lines 

may be chosen so as to determine at least    c.n      vertices of multiplicity 

j - that is,  through each of which ^ess exactly    j    of the lines)    was 

indicated in Grtinbaum [1972;  p. 20],  We repeat it here briefly for    j = k, 

in order to show how to obtain an estimate of  the form 

(***) ify(n)>   n2/6*K 

For    n> 6  t  we consider the horizontal and the vertical lines, 

and those of slopes    +1    or    -1   ,   that pass  through the points    (x,y)    of 

the integer lattice, with    0 5 x <C [n/6]   ,    0 ^y^ L(n+3)/6]  .  Then 

there are at most    3([n/6] + [(n+3)/6j) £ n   lines involved,  and they 

determine    [n/6][(n+3)/6J    quadruple points    (x,y)   ;   the estimate  (»**) 

follows easily. It may readily be improved to    rn^(n) > n2/4o. 

Although it is probably not hard  to show that 
— 2 c, = lim    Ta,(n)/n 

exists for each j >. 3 » no reasonable conjecture for the values c 

has been made. Even for j = kt   the estimates available are only 

1A0 5 C4  1/12 . 

The upper bound follows from the following combinatorial resultj 

Let    m (n)    denote  the maximal number of quadruplets formed by    n 

fifiaa&iiittMfiayfc—■■   «i PHI 
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elements, such that no pair occurs In more than one quadruplet. This 

combinatorial problem appears to be only partially solved (see Hanani 

[19613, Schttnhelm [i960], Hall [1967, p. 248], Niven [1970], Wilson 

[1970]) by the assertion that mjj(n) £ [[(n-l)/3]n/4] - £(n) , where 

6(n) = 1 if n^ 7 or n s?10 (mod 12) and £(n) = 0 otherwise; equality 

holds for n=0 or 3 (mod 12) and in some other cases, as well as for 

all sufficiently large n . 

For small n , a certain amount of additional information on 

mAn)    is available; it has been collected in Table 1. (The author is 

greatly indebted*to Mr. R. H. Hacmillan for information on his unpublished 

results, and for permission to include here his figure?, especially 

Figures 2 and 3.) 

A particularly interesting variant of the problem on    mAn)  is 
J 

the following: 

For each    j > 3  » determine    e,(n)   ,  the maximum of    m.(A )    when 
j On 

Aft   varies over all  those n-pointed sets In the plane  that contain no 

collinear (j+l)-tuple. 

This problem was first raised by ErdÖs  [1962], and Karteszi  [1963a] 

proved 

(#) eAn) > d   nlogn     for    some    d    > 0 

by showing that    e,( jn) >. j e,(n) + n. He established  this inequality 

by taking    j    copies of an    A      with    m (A ) = e.(n)   ,  and translating 

them by multiples of a suitable vector not parallel to any of the 

lines determined by    A    .  The estimate  (#)  follows easily.  Karteszi 
3/2 

[1963b]  conjectured  thet    eLAn) > <3L a        ;  we  shall establish» 

For each    J > 3    there exists^   d   > 0    such that 

eAn) J 
The proof  (of the projectlVely dual assertion)  is by induction on 

j  .    For    J s 3 it is enough to note    that the systems of    n   lines 

and      A(n)       triple points constructed In Burr-Grttnbaura-Sloane  [1973] 

Mi 
^HjäjujU^^g^^ ä2^äKäH&a<&ä 
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1 n Maximal known KII.(A ) 
4- n 

Maximal known m.(A ) 
M- n 

i 
f 

I 
I 

l 
7 
8 
9 

1   a 
1 a 
2 a 
2 a 
3 a 

10 
11 
12 
13 
14 

5 a 
6 a 
7 a 
9 

10 

12   o 
15   3ee Figure la 

18   See Figure lb 

20   b 
23   c 
28 See Figure 2 

29 o 

30 b 
32   c 

36   d 

40   b 

46   c 

50   c 
55   See Figure 3 

$ 

1 '         !5 
I          16 
1          !? 
1           18 1           19 

--■' 

1            20 
1           21 
1            22 
1           23 
1  "        2k 

I           26 
1          27 
1 •         28 

1           29 

24 

33 

1         30 
1          31 
1         32 
1          33 
1  _    34  

1          35 
1          36 

55 

61 

Table 1.  Known lower bounds for m^n). 

(a) The number equals m/(j(n). 

(b) See Figure 2.13 in Grünbaum [1972], 

(c) Obtained by deleting or oddinn points to the arrangements 

in Figures 1, 2, or 3. 

(d) Described by Ball [I960]. 
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Figure  i(b) 
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actually show that    e«(n) 5L A(n)> d0n2  .    If we have an arrangement 
3 / 3 U«l)/(J-2) 

A(k,j)    of    k   lines    that determine    d s d.k j-tuple 

points  (vertices) Plf.,.fP    , but no point is on more than    j    lines, we 

show   ei+i(n)^l d4+i
n as follows:    In   Euclidean 3-space we take 

one copy of    A(k,j) In the plane    z = 1, and another copy of A(k,j)  In 

the plane    z = q  , for a suitable Integer   q ,  the second copy rotated 

by an angle &(   with respect to the first.    Let   Li..«,L    be the 

straight lines connecting homologous vertices in the two copies. For 

each   b = 2,3,,.,,q-l  ,  the    d    intersection-points of the plane    z » b 

with the lines   L      form a set which is linearly equivalent to the set 

P.,,.,,,P    , and therefore lies on   k    suitable lines.  Thus    we have a 
d (J-D(j-2) (j-D/(j-2) 

family of    n « qk + d.k lines that determine    q d* k 

vertices of multiplicity      j-rl and, for a suitable choice of  o[ » no 

vertex of greater multiplicity.  A suitable  (parallel) projection of those 

lines yields a planar arrangement of lines with the same property.  But 

if    q    is chosen to be about    k1'^""2*  ,  it follows that   n    is about 

(d.+Dk^"1^^'2^   ?   therefore 
J 

.wW»V^Ml,,J/M, 
>1*"'   -   "J'1" -   ~J+1* 

and the proof is completed. 

It should be noted that all  the examples establishing the values of 

mi,(n)    in Table 1 actually contain no collinear quintuplets,  so that 

the values given are at the  same  time lower    bounds for    e^(n). 

A very interesting open problem is the determination of the  true 

order of magnitude of    e,(n)   .  It is well possible  that our result 

may be improved to    e An) > d* n   , 

Other related open problems are: 

The determination of    m,(n)   , defined as the maximal number of 

vertices of multiplicity    j    possible in arrangtments of    n    pseudollnes, 

A few instances in which better results are available for    m^'n)  than 

for   m^(n) are noted in Table 1, 

6^^^^lrnTTw^^B_,^,,,,,,,_ 
^MtfÜl sSßSöS^MiSÄäi 
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The problem of the combinatorial analogues of ffij(n) goes back 

I; to Kirkman [18^7] tut^ as noted above, is still not completely solved 

even for j = *J- • 

?    Also open is the question of determining the maximal possible 

number of vertices of multiplicity j in various kinds of arrangements 
\'r' 
of curves, for exaiaple such in which each curve is simple and every 

two intersect in two points. The corresponding combinatorial packing 

problems are open as well. 

#    #    # 

The following problem was posed by de Rocquigny [18973* 

What is the maximal number  WQ(n)    of points of tangency possible 

in ä system of    n    mutually non-crossing circles in the plane ? 

Using a blend of geometric and combinatorial arguments, Erdös- 

;Grünbaum [19733 established that    0Q(n) = 3n~6    for each    n >. k  * and 

that the same estimate holds for more general arrangements of non-crossing 

simple closed curves.  In the same paper, partial results were obtained 

on the following related problems: 

Determine    Ü (n)     [ and     Q*(n)   3   t  the maximal number of points 

of tangency in a family of    n    simple closed curves  [circles3 each two 

of which are either disjoint,  on'have one common point, or two points 

at which they cross each other.  The results of ErdÖs-GrÜnbaum [19733 are» 

There exist positive constants    c  , Cj_   ,  c«    and    nQ    such that 

for all    n > nQ 

and 

'+/3 5/3 
c1n '   £  k>(n) t£o2iT/J 

1 + c/loglog n 
60*(n) > n 

The analogue of de Rocquigny's problem for spheres in 3-space 

is still unsolved,  and so are similar problems concerning ovals in 

mak&Mt*ää*i 
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various incidence structures. 

#    *    # 

Another special class of arrangements of simple closed curves 

are the "independent families" and the "Venn diagrams". Motivated by 

the obvious and well known considerations from set thaory and logic, we 

shall say that a family of n simple closed curves A-,...,A  in the 

Euclidean plane is an independent family provided 

(##) x1fl'x2A... (\*n*0 
whenever each X. is chosen to be either the interior or the exterior 

of the curve A . An independent family is a Venn diagram if and only 

if each of the 2n sets in (##) is a connected region (cell of the 

Yerm diagram). Examples of Venn diagrams with n = 3 or n = 4 (such as 

those in Figures 4a and 4b) are frequently found in the literature. 

Combinatorially distinct Venn diagrams of 4 congruent ellipses are 

possible (Figures 4c and 4d), but no complete classification is known. 

Venn [1880] and many later authors (see, e.g., Gardner [19&7]) 

asserted that there is no Yerm  diagram composed of ellipses for n = 5 • 

This is erroneous, as is easily seen on hand of Figure 5« It is not 

hard to see that similar diagrams may be constructed using 5 copies of 

any non-circular ellipse. However, no Venn diagram can be formed by 

6 ellipses. This follows at once from the case j = 4 of the following 

lemma, which is easy to establish but rather useful (see Grünbaum [1973c]) 

If an independent family of n curves is such that each two curves 

meet in at most n points, then 

j > (2n - Z)/(p  = 4(2n'1 - l)/n(n-l) . 

Let k-gon    mean any convex polygon with at most    k    sides. We shall 

denote by    n(k)     the maximal number of members in any Independent 

family of k-gons in the  plane,  and by    k(n)    the minimal    k    such that 

there exists an independent family on    n      k-gons.  The similarly defined 
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numbers dealing with Venn diagrams shall be denoted    n*(k)    and    k*(n)   • 

Then the above lemma with    j = 2k , and an Inductive construction 

illustrated (up to    n = 6) in Figure 6, may be used to establish 

lim   n(k)/log_k =    lim   n*(k)/log-k  = 1 . 
k-*» d        k-?QD c 

(The same result holds even if each bounded cell of the Venn 

diagram is required to be convex.) 

The above result appears in Renyi-Renyi-Suranyi  [1951]; however, 

their proof is based on a statement obtained from our lemma by replacing 

the inequality of its conclusion by the stronger Inequality 

i >   Znmml/(n"X)  . 

Unfortunately,  this statement is not true, as may be seen by the example 

in Figure 7, where n = ] = 6 . It would be of some interest to investigate 

whether the stronger inequality can be established for convex polygons 

of j/2 sides  , although this does not seem likely. 

Among other results obtained In Grünbaum [1973c] we mention: 

k(3) = k*(3) = k(*0 = k*(M - k(5) = k*(5) = 3 J 

k(6) £ k*(6) ^i 

k(7) ± 6 . 

Equality probably holds in all those estimates;  an example of a Venn 

diagram with 5 triangles is given in Figure 8. 

Many other attractive problems on Venn diagrams,  on diagrams 

exhibiting rotational symmetry (as in Figure 8),  and on hlgher-dimenslonal 

generalisations are given in Grünbaum [1973c],  where detailed references 

to the literature may also be  found. 

* # # 

Our last topic concerns a very new problem on arrangements of 

simple curves In the plane, which shows that there are non-trivial 

problems even If only arrangements consisting of a single curve are 

considered. It was inspired by a recent problem of Malkevitch [1971]. 

mmmmmmmm 
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Let    C    be a simple  closed curve In the  plane.  We  shall say that 

a point    p    Is of order    k    with respect to;  C    if each ray Issuing 

from    p    meets    C    In precisely    k    connected components.  For    k !> 2 

we shall denote by (G)     the Sfct of all points of order    k   with 

respect to    C .  The problem is  to characterize,  for each    k ,  the 

«k<c> . possible sets 

It is not too hard to verify the possibilities for       r>> , (C) 
K 

listed in Table 2. We conjecture that Table 2 gives a complete 

characterization of all the possible sets X? AQ)   . This conjecture 
K. 

has been recently established by B. Hedman [1973] in cases k = 2 and 

k = 3 provided the curves G are restricted to be simple polygons. 

(I am indebted to B. Hedman for several corrections of my original 

conjecture.) 

It would be very interesting to verify the conjecture for general 

curves C , and for k >^ . Hedman*s proof relies heavily on the 

polygonal nature of the curves, and does not seem likely to be 

extendable to general C » or to k > ^ . 
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Type of set       '^(C) POSE ible for   . 

1 0 all k> 2 

i single point all k> 2 

| two points all k p. 2 

three points all k>3 

I 
four points  \a' k = 3 

j  ■ one segment '^) all k > 2 

\ two segments  vb),(c) k = 2 

■ 

a segment and a point 'b>»*d> all k> 2 

I - a segment and two points         ' all k > 3 

j ■        -     . J.      '      '. Table     2. 

l      " ,- • ■ •     ■■  :              ... ■-.                 '■-     ...-.' 

(a) For k - 3 possible only if the four points are the vertices 

of a convex quadrangle which has no pairs of parallel sides. For 

k £ k possible also if the sides of one pair are parallel,  or if 

three of the points are collinear. 

(b) The segraent(s)  way be closed,  open,  or half-open. 

(c) Possible only if  the segments aro disjoint,  non-parallel, 

and  the  convex hull of   their union is a quadrangle, 

(d) Possible only if  the point is not collinear with the segment. 

(e) Possible only if  the  two  points are in the  same open holfplane 

determined by  the  segment. 

HIHl mi£mmmm**mmmmimmmtiUi&*ä&aimmm rtrt'frVnfr^tffcnäWr*-*^'-.-^"*-^'»^-----.--^- £raw.k»tf«5 
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Figure 9. 

A polygonal curve G for which   ^C(C)  consists of 4 points. 
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